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Abstract
The Clifford–Hermite and the Clifford–Gegenbauer polynomials of standard
Clifford analysis are generalized to the new framework of Clifford analysis
in superspace in a merely symbolic way. This means that one does not
a priori need an integration theory in superspace. Furthermore, a lot of basic
properties, such as orthogonality relations, differential equations and recursion
formulae, are proven. Finally, an interesting physical application of the super
Clifford–Hermite polynomials is discussed, thus giving an interpretation to the
super-dimension.

PACS numbers: 02.30.Fn, 02.30.Gp, 02.30.Tb
Mathematics Subject Classification: 30G35, 58C50, 42C05

1. Introduction

Clifford analysis offers a natural generalization of the theory of complex holomorphic functions
in the plane to higher dimension, in which the Dirac operator ∂x generalizes the Cauchy–
Riemann operator ∂z = ∂x + i∂y . The basic references for this mathematics field are [1–3].

In some recent papers [4–7] we have started to develop an extension of Clifford analysis
to superspace, i.e., a space with not only commuting but also anti-commuting variables. These
superspaces are of great importance in modern theoretical physics. The basic framework,
containing all necessary symbols and operators such as Dirac, Euler and Gamma operators,
was developed in [4, 5]. Next in [6, 7] we studied spherical monogenics, which are polynomial
null-solutions of the super Dirac operator. We were able to construct a.o. bases for spaces
of spherical monogenics and a formal type of integration over the supersphere leading to the
Berezin integral (see [8]).
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An important tool in Clifford analysis is orthogonal polynomials such as the Clifford–
Hermite and the Clifford–Gegenbauer polynomials. They were introduced in the PhD thesis
of Cnops ([9], see also [2]) as higher dimensional generalizations of the classical Hermite and
Gegenbauer polynomials and have some interesting applications, e.g., in multi-dimensional
wavelet analysis (see [10, 11]). Moreover, in [9] it is also proven that under certain assumptions
these are the only types of classical orthogonal polynomials that can be generalized to the
framework of Clifford analysis.

In the present paper these special functions are extended to the superspace setting. This
is done by a careful analysis of their definition in the Euclidean case, providing us with a
canonical way to generalize them. The main advantage of our approach is that in the resulting
special functions one cannot really see the difference between the Euclidean and the superspace
cases. The only difference is that instead of the Euclidean dimension one has to consider the
so-called super-dimension (to be introduced in section 2) in all formulae.

Note that also other approaches are possible in the construction of special polynomials in
superspace. We refer the reader to a.o. [12].

The paper is organized as follows: first a brief introduction to Clifford analysis on
superspace is given (section 2). Then the Clifford–Hermite polynomials (section 3) and the
Clifford–Gegenbauer polynomials (section 4) are defined and some of their basic properties
are proven: orthogonality, recurrence relations, differential equation, Rodrigues formula etc.
Finally, an interesting physical application and a possible further extension are discussed.

2. The superspace framework of Clifford analysis

Superspaces are spaces where one considers not only commuting but also anti-commuting
coordinates (see a.o. [8, 13–15]). In our approach to superspace (see [4, 5]), we start with the
real algebra P = Alg(xi, ei; x̀j , èj ), i = 1, . . . , m, j = 1, . . . , 2n generated by

• m commuting variables xi and m orthogonal Clifford generators ei

• 2n anti-commuting variables x̀i and 2n symplectic Clifford generators èi

subject to the multiplication relations




xixj = xjxi

x̀i x̀j = −x̀j x̀i

xi x̀j = x̀j xi

and




ej ek + ekej = −2δjk

è2j è2k − è2kè2j = 0

è2j−1è2k−1 − è2k−1è2j−1 = 0

è2j−1è2k − è2kè2j−1 = δjk

ej èk + èkej = 0

and where, moreover, all elements ei, èj commute with all elements xi, x̀j . The algebra
generated by all the ei, èj is denoted by C. In the case where n = 0 we have that C ∼= R0,m, the
standard orthogonal Clifford algebra with signature (−1, . . . ,−1). The main anti-involution
.̄ on R0,m is defined by

ab = ba, a, b ∈ R0,m

ej = −ej .

The most important element of the algebra P is the vector variable x = x + x̀ with

x =
m∑

i=1

xiei x̀ =
2n∑

j=1

x̀j èj .

The square of x is scalar-valued and equals x2 = ∑n
j=1 x̀2j−1x̀2j − ∑m

j=1 x2
j .
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On the other hand the super Dirac operator is defined as

∂x = ∂x̀ − ∂x = 2
n∑

j=1

(
è2j ∂x̀2j−1 − è2j−1∂x̀2j

) −
m∑

j=1

ej ∂xj
.

Its square is the super Laplace operator

� = ∂2
x = 4

n∑
j=1

∂x̀2j−1∂x̀2j
−

m∑
j=1

∂2
xj

.

If we let ∂x act on x we find that

∂xx = m − 2n = M,

where M is the so-called super-dimension. This numerical parameter gives a global
characterization of our superspace and will be very important in what follows.

Furthermore, we introduce the super Euler operator

E =
m∑

j=1

xj∂xj
+

2n∑
j=1

x̀j ∂x̀j
.

This operator allow us to decompose P as

P =
∞⊕

k=0

Pk, Pk = {ω ∈ P | Eω = kω} .

Now we have the following

Definition 1. An element F ∈ P is a spherical monogenic of degree k if it satisfies

∂xF = 0

EF = kF, i.e. F ∈ Pk.

Moreover, the space of all spherical monogenics of degree k is denoted by Mk .

The basic calculational rules for the Dirac operator are given in the following lemma
(see [4]).

Lemma 1. Let s ∈ N and Rk ∈ Pk , then

∂x(x
2sRk) = 2sx2s−1Rk + x2s∂xRk

∂x(x
2s+1Rk) = (2k + M + 2s)x2sRk − x2s+1∂xRk.

We then immediately have

Corollary 1. Let s ∈ N and Pk ∈ Mk , then

∂x(x
2sPk) = 2sx2s−1Pk

∂x(x
2s+1Pk) = (2k + M + 2s)x2sPk.

These formulae lead to (see [6])

Theorem 1 (Fischer decomposition). Let M �∈ −2N. Then Pk decomposes as

Pk =
k⊕

i=0

xiMk−i .
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Finally, the dimension of the space Mk (i.e. the rank as a free C-module) can be calculated
using a Cauchy–Kowalewskaia extension principle and is given by (see [6])

dimMk =
min(k,2n)∑

i=0

(
2n

i

)(
k − i + m − 2

m − 2

)
.

Remark 1. It is also possible to consider larger superalgebras than the algebra P . This is,
e.g., necessary if one wants to construct a fundamental solution for the super Dirac operator
(see [16]).

3. Clifford–Hermite polynomials in superspace

In classical Clifford analysis, the Clifford–Hermite polynomials (see [2]) are defined using the
following inner product,

(f, g) =
∫

R
m

f (x)g(x) ex2
dV (x),

on L2
(
R

m; ex2)
, where .̄ is the main anti-involution on the Clifford algebra R0,m. For our

purpose, it suffices to know this inner product for functions of the form f = xsPk, g = xtPl ,
with Pk and Pl being spherical monogenics of degrees k and l, respectively, in R

m. The
previous integral can then be rewritten, using spherical coordinates x = rξ , as

(xsPk, x
tPl) =

∫
R

m

Pkx̄
sxtPl ex2

dV (x)

=
∫ ∞

0
rkrsrt r l e−r2

rm−1 dr

∫
S

m−1
Pk(ξ) ξ

s
ξ tPl(ξ) d�(ξ)

= 1

2
�

(
k + s + t + l + m

2

)∫
S

m−1
Pk(ξ) ξ

s
ξ tPl(ξ) d�(ξ)

with �(·) being the Gamma function. Note that this inner product consists of two parts: a
radial part and an angular part which is an integration over the unit sphere. If we consider,
e.g., the case s = 2a, t = 2b the angular integral simplifies to∫

S
m−1

Pk(ξ) ξ
2a

ξ 2bPl(ξ) d�(ξ) = (−1)a+b

∫
S

m−1
Pk(ξ)Pl(ξ) d�(ξ).

The remaining integral is an inner product on the space of spherical monogenics and can
be left out of our discussion.

So, by introducing the following real vector space in our super-setting,

R(Pk) =



n∑
j=0

ajx
jPk | n ∈ N, aj ∈ R


 ,

where Pk is a spherical monogenic of degree k, fixed once and for all, one can define a bilinear
form on R(Pk). This is done by using the previous calculations; however, replacing the
Euclidean dimension m by the super-dimension M (see also remark 4). We then obtain the
following

Definition 2. Let 2β = M + 2k, then the bilinear form 〈,〉 on R(Pk) is defined by

〈x2sPk, x
2tPk〉 = (−1)s+t 1

2�(s + t + β)

〈x2s+1Pk, x
2tPk〉 = 0

〈x2sPk, x
2t+1Pk〉 = 0

〈x2s+1Pk, x
2t+1Pk〉 = (−1)s+t 1

2�(s + t + β + 1)

extended by linearity to the whole of R(Pk).
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Note that this bilinear form is symmetric, but in general not positive definite (this is only
the case if M ∈ N,M > 0). Furthermore, it is not defined if and only if M ∈ −2N, due to the
singularities of the Gamma function.

We now introduce the following operator,

D+ = ∂x + 2x,

which satisfies D+(R(Pk)) ⊂ R(Pk) because of corollary 1. Now we have the following
important property of 〈,〉.
Proposition 1. The operators ∂x and D+ are dual with respect to 〈,〉, i.e.

〈D+piPk, pjPk〉 = 〈piPk, ∂xpjPk〉,
with piPk, pjPk ∈ R(Pk), where pi and pj are polynomials in the vector variable x.

Proof. In [2] the similar proposition in the standard Clifford analysis case is proven by using
Stokes’s theorem in R

m. In our case we need a different approach.
We have that

〈D+x
2sPk, x

2tPk〉 = 0 = 〈x2sPk, ∂xx
2tPk〉

and

〈D+x
2s+1Pk, x

2tPk〉 = (2k + 2s + M)〈x2sPk, x
2tPk〉 + 2〈x2s+2Pk, x

2tPk〉
= (2k + 2s + M)(−1)s+t 1

2�(s + t + β) + 2(−1)s+t+1 1
2�(s + t + β + 1)

= (−1)s+t 1
2�(s + t + β) (2k + 2s + M − 2(s + t + β))

= −2t (−1)s+t 1
2�(s + t + β)

= 〈x2s+1Pk, 2tx2t−1Pk〉
= 〈x2s+1Pk, ∂xx

2tPk〉.
The expression 〈D+x

2sPk, x
2t+1Pk〉 is calculated in the same way. �

Now we arrive at the definition of the Clifford–Hermite polynomials in superspace.

Definition 3. Let Pk be a spherical monogenic of degree k. Then

Ht,M(Pk)(x) = (D+)
tPk

is a Clifford–Hermite polynomial of degree (t, k).

We have that, by corollary 1, Ht,M(Pk)(x) = Ht,M,k(x)Pk , where Ht,M,k(x) is a
polynomial in the vector variable x, which does not depend on the specific choice of Pk ,
but only on the integer k. So clearly Ht,M(Pk)(x) ∈ R(Pk).

The first few Clifford–Hermite polynomials have the following general form:

H0,M(Pk)(x) = Pk

H1,M(Pk)(x) = 2xPk

H2,M(Pk)(x) = [4x2 + 2(2k + M)]Pk

H3,M(Pk)(x) = [8x3 + 4(2k + M + 2)x]Pk

H4,M(Pk)(x) = [16x4 + 16(2k + M + 2)x2 + 4(2k + M + 2)(2k + M)]Pk.

Now we derive the basic properties of these new polynomials. We first have the following
straightforward recursion formula.
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Theorem 2 (recursion formula).

Ht,M(Pk)(x) = D+Ht−1,M(Pk)(x).

The Clifford–Hermite polynomials are orthogonal with respect to 〈, 〉, as is expressed in the
following theorem.

Theorem 3 (orthogonality relation). If s �= t then

〈Hs,M(Pk)(x),Ht,M(Pk)(x)〉 = 0.

Proof. Suppose s > t . Then

〈Hs,M(Pk)(x),Ht,M(Pk)(x)〉 = 〈
Ds

+Pk,Ht,M(Pk)(x)
〉

= 〈
Pk, ∂

s
xHt,M(Pk)(x)

〉
= 0,

by proposition 1 and corollary 1. �

Lemma 2. The functions Hj,M(Pk)(x), j = 0, 1, 2, . . . constitute a basis for R(Pk).

Proof. It suffices to note that the coefficient of Hj,M(Pk)(x) in xj is always different from
zero. �

The Clifford–Hermite polynomials are solutions of a partial differential equation in
superspace. This equation is given in the following

Theorem 4 (differential equation). Ht,M(Pk)(x) is a solution of the following differential
equation

∂2
xHt,M(Pk)(x) + 2x∂xHt,M(Pk)(x) − C(t,M, k)Ht,M(Pk)(x) = 0

with

C(t,M, k) =
{

2t, t even
2(t + M + 2k − 1), t odd.

Proof. This theorem can be proven by induction. This is necessary in the case where
M ∈ −2N. In the other cases it is also possible to use the method described in [2].

We write the following expansion of the Clifford–Hermite polynomials,

H2t,M(Pk) =
t∑

i=0

a2t
2i x

2iPk H2t+1,M(Pk) =
t∑

i=0

a2t+1
2i+1x

2i+1Pk.

The recursion formula combined with corollary 1 leads to the following relation among the
coefficients:

a2t
2i = (2i + 2k + M)a2t−1

2i+1 + 2a2t−1
2i−1

a2t+1
2i+1 = (2i + 2)a2t

2i+2 + 2a2t
2i .

We need to prove the following (which one can easily see to be true if t = 0),

∂xH2t,M(Pk) = 4tH2t−1,M(Pk)
(1)

∂xH2t+1,M(Pk) = 2(2t + 2k + M)H2t,M(Pk),
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or, in terms of the ai
j ,

2ia2t
2i = 4ta2t−1

2i−1

(2k + 2i + M)a2t+1
2i+1 = 2(2t + 2k + M)a2t

2i .

Indeed, letting act D+ on (1) then yields the theorem.
Suppose now that formula (1) holds for Ht,M(Pk)(x), t � 2s. We show that it also holds

for t = 2s + 1. Indeed

(2k + 2i + M)a2s+1
2i+1 = (2k + 2i + M)

(
(2i + 2)a2s

2i+2 + 2a2s
2i

)
= (2k + 2i + M)

(
4sa2s−1

2i+1 + 2a2s
2i

)
= 4sa2s

2i − 8sa2s−1
2i−1 + 2(2k + 2i + M)a2s

2i

= 2(2s + 2k + M)a2s
2i + 4ia2s

2i − 8sa2s−1
2i−1

= 2(2s + 2k + M)a2s
2i .

Similarly we can prove that if the theorem holds for t � 2s + 1, then it also holds for
t = 2s + 2. �

The previous proof can be used to give explicit formulae for the coefficients ai
j in the

expansion of the Hermite polynomials. This yields the following

Theorem 5 (explicit form). If M �∈ −2N, then the coefficients in the expansion of the
Clifford–Hermite polynomials take the following form:

a2t
2i = 22t

(
t

i

)
�(t + k + M/2)

�(i + k + M/2)

a2t+1
2i+1 = 22t+1

(
t

i

)
�(t + 1 + k + M/2)

�(i + 1 + k + M/2)
.

Proof. We first prove the formula for a2t
2i . We have that, using the expressions from the

previous proof,

a2t
2i = 2t

i
a2t−1

2i−1

= 4t (t + k − 1 + M/2)

i(i + k − 1 + M/2)
a2t−2

2i−2

= · · ·
= 22i t . . . (t − i + 1)

i(i − 1) . . . 1

(t + k − 1 + M/2) . . . (t + k − i + M/2)

(i + k − 1 + M/2) . . . (k + M/2)
a2t−2i

0

= 22i

(
t

i

)
�(t + k + M/2)�(k + M/2)

�(t + k − i + M/2)�(i + k + M/2)
a2t−2i

0 .

So we need a formula for a2t
0 . This can be done as follows:

a2t
0 = (2k + M)a2t−1

1

= (2k + M)2
2t + M + 2k − 2

2k + M
a2t−2

0

= 4(t + k − 1 + M/2)a2t−2
0

= · · ·
= 22t (t + k − 1 + M/2) . . . (k + M/2)a0

0

= 22t �(t + k + M/2)

�(k + M/2)
.
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Combining these results gives the desired formula for a2t
2i . The formula for a2t+1

2i+1 follows
from the observation that

a2t+1
2i+1 = 2

2t + 2k + M

2i + 2k + M
a2t

2i . �

Now, using the results on the differential equation of the Clifford–Hermite polynomials,
we can obtain a second recursion formula:

Theorem 6 (recursion formula bis).

Ht+1,M(Pk) = 2xHt,M(Pk) + C(n,M, k)Ht−1,M(Pk).

Proof.

Ht+1,M(Pk) = D+Ht,M(Pk)

= (∂x + 2x)Ht,M(Pk)

= 2xHt,M(Pk) + C(t,M, k)Ht−1,M(Pk). �

One can also formally introduce a Rodrigues formula in superspace. First we define the
generalized Gaussian function

exp(x2) =
∞∑

k=0

1

k!
x2k

which we will manipulate symbolically. We then have the following theorem.

Theorem 7 (Rodrigues formula). The Clifford–Hermite polynomials take the form

Ht,M(Pk)(x) = exp(−x2)(∂x)
t exp(x2)Pk.

Proof. This follows immediately from the following operator equality on R(Pk),

exp(−x2)∂x exp(x2) = D+,

combined with the definition of the Clifford–Hermite polynomials. �

Finally, as Ht,M(Pk)(x) = Ht,M,k(x)Pk , where Ht,M,k(x) is a polynomial in the vector
variable x, it is a natural question to ask whether these polynomials are related to orthogonal
polynomials on the real line. This is indeed the case. More specifically we have the following

Theorem 8. One has that

H2t,M,k(x) = 22t t!L
M
2 +k−1

t (−x2)

H2t+1,M,k(x) = 22t+1t!xL
M
2 +k

t (−x2),

where Lα
n are the generalized Laguerre polynomials on the real line.

Proof. This follows immediately by comparing the coefficients given in theorem 13 with the
definition of the generalized Laguerre polynomials:

Lα
t (x) =

t∑
i=0

�(t + α + 1)

i!(t − i)!�(i + α + 1)
(−x)i . �

Let us finally calculate the normalization constants 〈Ht,M(Pk)(x),Ht,M(Pk)(x)〉.
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Theorem 9. One has that

〈H2t,M(Pk)(x),H2t,M(Pk)(x)〉 = 1
2 42t t!�(t + M/2 + k)

〈H2t+1,M(Pk)(x),H2t+1,M(Pk)(x)〉 = 1
2 42t+1t!�(t + M/2 + k + 1).

Proof. We only do the first one, the other one is similar. We have that

〈H2t,M(Pk)(x),H2t,M(Pk)(x)〉 = 1

C(2t,M, k)
〈D+∂xH2t,M(Pk)(x),H2t,M(Pk)(x)〉

= 1

C(2t,M, k)
〈∂xH2t,M(Pk)(x), ∂xH2t,M(Pk)(x)〉

= C(2t,M, k)〈H2t−1,M(Pk)(x),H2t−1,M(Pk)(x)〉
= · · ·
= C(2t,M, k)C(2t − 1,M, k) . . . C(1,M, k)〈Pk, Pk〉
= C(2t,M, k)C(2t − 1,M, k) . . . C(1,M, k)

1

2
�(β).

Replacing the coefficients C(i,M, k) by their actual values gives the desired formula. �

Remark 2. The factor 2 appearing in our definition of the operator D+ = ∂x + 2x is
a convention. This factor corresponds with the so-called physical definition of the classical
Hermite polynomials on the real line. Moreover, if one considers the case where m = 1, n = 0
then clearly k = 0 and Pk = 1 as the polynomial null-solutions of the one-dimensional Dirac
operator are simply the constants. In this case the Clifford–Hermite polynomials reduce to the
classical Hermite polynomials.

Remark 3. The polynomials xtPk and Ht,M(Pk) both satisfy the following property:

∂xx
tPk =

{
txt−1Pk t even
(t − 1 + 2k + M)xt−1Pk t odd

∂xHt,M(Pk) =
{

2tHt−1,M(Pk) t even
2(t − 1 + 2k + M)Ht−1,M(Pk) t odd.

The factor 2 in the formula for the Hermite polynomials disappears if we use the
mathematical definition D+ = ∂x + x instead of our physical definition (see also the remark
above). So we note that the coefficients are the same in both cases. It is interesting to compare
this with the work of Rota et al in [17], where they construct an algebraic theory of special
polynomials on the real line. In the terminology of that paper, xtPk, t = 0, 1, 2, . . . would be
a basic sequence for the operator ∂x and Ht,M(Pk), t = 0, 1, 2, . . . would be a corresponding
Sheffer set. Moreover, our framework gives a quite natural extension of this theory to higher
dimensions and it would be worthwhile to further analyze this correspondence.

Remark 4. The crucial part in our treatment of the Clifford–Hermite polynomials was the
replacement of the classical Euclidean dimension m by the super-dimension M. The same
technique has also been used in [7] to construct an integral on superspace. This integral turned
out to be equivalent with the Berezin integral.

4. Clifford–Gegenbauer polynomials in superspace

In the Euclidean case, the Clifford–Gegenbauer polynomials are defined making use of the
following inner product on the unit ball B(1) in R

m (see [2]):
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(f, g)α =
∫

B(1)

f (x)g(x)(1 + x2)α dV (x).

However, similar to the previous section, a computation of this inner product is sufficient
in the case f = xsPk, g = xtPl , with Pk and Pl being spherical monogenics of degrees k and
l, respectively, in R

m. Under that assumption, the previous integral reduces, using spherical
coordinates, to

(xsPk, x
tPl)α =

∫
B(1)

PkxsxtPl(1 + x2)α dV (x)

=
∫ 1

0
rkrsrt r l(1 − r2)αrm−1 dr

∫
S

m−1
Pk(ξ) ξ

s
ξ tPl(ξ) d�(ξ)

= 1

2
B

(
k + s + t + l + m

2
, α + 1

) ∫
S

m−1
Pk(ξ) ξ

s
ξ tPl(ξ) d�(ξ)

with B(x, y) = �(x)�(y)/�(x + y) being the Beta function.
Again this inner product consists of two parts: a radial part and an angular part which

is an inner product on the unit sphere. This second part is treated in the same way as in
section 3. Restricting ourselves to spaces of the type R(Pk), as in section 3, we are thus led
to the following definition, where we have again replaced the Euclidean dimension m by the
super-dimension M.

Definition 4. Let 2β = M + 2k, then the bilinear form 〈, 〉α (parametrized by α) is defined by

〈x2sPk, x
2tPk〉α = (−1)s+t 1

2B(s + t + β, α + 1)

〈x2s+1Pk, x
2tPk〉α = 0

〈x2sPk, x
2t+1Pk〉α = 0

〈x2s+1Pk, x
2t+1Pk〉α = (−1)s+t 1

2B(s + t + β + 1, α + 1)

extended by linearity to the whole of R(Pk).

This bilinear form is well defined if and only if α �∈ −N and M �∈ −2N.
Now we introduce the following important operator,

Dα = (1 + x2)∂x + 2(1 + α)x,

which satisfies Dα(R(Pk)) ⊂ R(Pk) because of corollary 1.
This operator behaves well with respect to the bilinear form 〈,〉α , as is shown in the

following proposition.

Proposition 2. The operators ∂x and Dα are dual with respect to 〈,〉α , i.e.

〈DαpiPk, pjPk〉α = 〈piPk, ∂xpjPk〉α+1,

with piPk, pjPk ∈ R(Pk), where pi and pj are polynomials in the vector variable x.

Proof. It suffices to prove the proposition for 〈Dαx2s+1Pk, x
2tPk〉α, 〈Dαx2sPk, x

2t+1Pk〉α,

〈Dαx2s+1Pk, x
2t+1Pk〉α and 〈Dαx2sPk, x

2tPk〉α . We only calculate the first one, the others are
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completely similar:

〈Dαx2s+1Pk, x
2tPk〉α = 2(α + 1)〈x2s+2Pk, x

2tPk〉α + (2k + 2s + M)〈(1 + x2)x2sPk, x
2tPk〉α

= (−1)s+t+1 1

2
(2α + 2 + 2k + M + 2s)B(s + t + β + 1, α + 1)

+ (2k + 2s + M)(−1)s+t 1

2
B(s + t + β, α + 1)

= (−1)s+t 1

2
�(α + 1)

(
−(2α + 2 + 2k + M + 2s)

�(s + t + β + 1)

�(s + t + β + α + 2)

+ (2k + 2s + M)
�(s + t + β)

�(s + t + β + α + 1)

)

= (−1)s+t 1

2
�(α + 1)

�(s + t + β)

�(s + t + β + α + 2)
(−(2α + 2 + 2k + M + 2s)(s + t + β)

+ (2k + M + 2s)(s + t + β + α + 1))

= − (−1)s+t 1

2
�(α + 1)

�(s + t + β)

�(s + t + β + α + 2)
(α + 1)2t

= − (−1)s+t 1

2
B(s + t + β, α + 2)2t

= 〈x2s+1Pk, ∂xx
2tPk〉α+1. �

We are now able to define the Clifford–Gegenbauer polynomials in superspace.

Definition 5. Let Pk be a spherical monogenic of degree k. Then

Cα
t,M(Pk)(x) = DαDα+1 · · · Dα+t−1Pk

is a Clifford–Gegenbauer polynomial of degree (t, k).

Again we have that, by corollary 1, Cα
t,M(Pk)(x) = Cα

t,M,k(x)Pk , where Cα
t,M,k(x) is a

polynomial in the vector variable x, which does not depend on Pk , but only on the integer k.
Explicitly, we find the following form for the first Clifford–Gegenbauer polynomials:

Cα
0,M(Pk)(x) = Pk

Cα
1,M(Pk)(x) = 2(1 + α)xPk

Cα
2,M(Pk)(x) = [2(2 + α)(2k + M + 2 + 2α)x2 + 2(2 + α)(2k + M)]Pk

Cα
3,M(Pk)(x) = 4(3 + α)(2 + α)[(2k + M + 2α + 4)x3 + (2k + M + 2)x]Pk.

Now we have the following recursion relation.

Theorem 10 (recursion formula).

Cα
t+1,M(Pk)(x) = DαCα+1

t,M (Pk)(x).

Proof. It is immediately calculated that

Cα
t+1,M(Pk)(x) = DαDα+1 · · ·Dα+tPk

= Dα (Dα+1 · · · Dα+tPk)

= DαCα+1
t,M (Pk)(x). �

Clifford–Gegenbauer polynomials of different degree are orthogonal, as is expressed in
the following theorem.
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Theorem 11 (Orthogonality relation). If s �= t then〈
Cα

s,M(Pk)(x), Cα
t,M(Pk)(x)

〉
α

= 0.

Proof. Suppose s > t . Then〈
Cα

s,M(Pk)(x), Cα
t,M(Pk)(x)

〉
α

= 〈
DαDα+1 · · · Dα+s−1Pk, C

α
t,M(Pk)(x)

〉
α

= 〈
Pk, (∂x)

sCα
t,M(Pk)(x)

〉
α+s

= 0,

by proposition 2 and corollary 1. �
The Clifford–Gegenbauer polynomials also satisfy a partial differential equation in

superspace.

Theorem 12 (differential equation). Cα
t,M(Pk)(x) is a solution of the following differential

equation,

(1 + x2)∂2
xCα

t,M(Pk)(x) + 2(α + 1)x∂xC
α
t,M(Pk)(x) − C(α, t,M, k)Cα

t,M(Pk)(x) = 0,

with

C(α, t,M, k) =
{

(2α + t + 1)(t + M + 2k − 1), t odd

t (2α + t + M + 2k), t even.

Proof. The theorem can be proved using induction on t. The cases where t = 0, 1 are easily
checked. We write the following expansion of the Gegenbauer polynomials:

Cα
2t,M(Pk) =

t∑
i=0

a
2t,α
2i x2iPk Cα

2t+1,M(Pk) =
t∑

i=0

a
2t+1,α
2i+1 x2i+1Pk. (2)

The recursion formula combined with corollary 1 leads to the following relation between
the coefficients:

a
2t,α
2i = (2i + 2k + M)a

2t−1,α+1
2i+1 + (2α + 2i + M + 2k)a

2t−1,α+1
2i−1

a
2t+1,α
2i+1 = (2i + 2)a

2t,α+1
2i+2 + 2(1 + α + i)a

2t,α+1
2i .

We need to prove the following,

∂xC
α
2t,M(Pk) = 2t (2α + 2t + M + 2k)Cα+1

2t−1,M(Pk)

∂xC
α
2t+1,M(Pk) = (2α + 2t + 2)(2t + 2k + M)Cα+1

2t,M(Pk),

or, in terms of the a
i,α
j ,

2ia
2t,α
2i = 2t (2α + 2t + M + 2k)a

2t−1,α+1
2i−1

(2k + 2i + M)a
2t+1,α
2i+1 = (2α + 2t + 2)(2t + 2k + M)a

2t,α+1
2i .

Suppose now that the theorem holds for Cα
t,M(Pk), t � 2s. We show that it also holds for

t = 2s + 1. Indeed,

(2k + 2i + M)a
2s+1,α
2i+1 = (2k + 2i + M)

(
(2i + 2)a

2s,α+1
2i+2 + (2 + 2α + 2i)a

2s,α+1
2i

)
= (2k + 2i + M)

(
2s(2α + 2s + M + 2k + 2)a

2s−1,α+2
2i+1 + (2 + 2α + 2i)a

2s,α+1
2i

)
= (2k + 2i + M)(2 + 2α + 2i)a

2s,α+1
2i

+ 2s(2α + 2s + M + 2k + 2)
(
a

2s,α+1
2i − (2α + 2i + M + 2k + 2)a

2s−1,α+2
2i−1

)
= (2α + 2s + 2)(2s + 2k + M)a

2s,α+1
2i

+ (2α + 2i + M + 2k + 2)
(
2ia

2s,α+1
2i − 2s(2α + 2s + M + 2k + 2)a

2s−1,α+2
2i−1

)
= (2α + 2s + 2)(2s + 2k + M)a

2s,α+1
2i .
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Similarly we prove that if the theorem holds for t � 2s + 1, then it also holds for
t = 2s + 2. �

Now we can give general formulae for the coefficients of the Clifford–Gegenbauer
polynomials, where we use the notations of the previous proof.

Theorem 13 (explicit form). If M �∈ −2N and α �∈ −N, then the coefficients in the expansion
of the Clifford–Gegenbauer polynomials take the following form,

a
2t,α
2i = 22t

(
t

i

)
�(t + k + M/2)

�(i + k + M/2)
(α + t + 1)t (α + t + k + M/2)i

a
2t+1,α
2i+1 = 22t+1

(
t

i

)
�(t + 1 + k + M/2)

�(i + 1 + k + M/2)
(α + t + 1)t+1(α + t + k + M/2 + 1)i

with (a)p = a(a + 1) · · · (a + p − 1) being the Pochhammer symbol.

Proof. We first prove the formula for a
2t,α
2i . We find that, using the expressions from the

previous proof,

a
2t,α
2i = t

i
(2α + 2t + M + 2k)a

2t−1,α+1
2i−1

= 4
t

i
(α + t + M/2 + k)(α + t + 1)

t + k + M/2 − 1

i + k + M/2 − 1
a

2t−2,α+2
2i−2

= · · ·
= 22i

(
t

i

)
(t + k + M/2 − 1) . . . (t + k − i + M/2)

(i + k + M/2 − 1) . . . (k + M/2)
(α + t + 1) . . . (α + t + i)

× (α + t + M/2 + k) . . . (α + t + M/2 + k + i − 1)a
2t−2i,α+2i
0

= 22i

(
t

i

)
�(t + k + M/2)

�(t + k − i + M/2)

�(k + M/2)

�(i + k + M/2)

× (α + t + 1)i(α + t + k + M/2)ia
2t−2i,α+2i
0 .

We need a formula for a
2t,α
0 . This can be done as follows:

a
2t,α
0 = (2k + M)a

2t−1,α+1
1

= (2k + M)
2t + M + 2k − 2

2k + M
(2α + 2t + 2)a

2t−2,α+2
0

= 4(t + k − 1 + M/2)(α + t + 1)a
2t−2,α+2
0

= · · ·
= 22t (t + k − 1 + M/2) . . . (k + M/2)(α + t + 1) · · · (α + 2t)a

0,α+2t
0

= 22t �(t + k + M/2)

�(k + M/2)
(α + t + 1)t .

Combining these results gives the formula stated in the theorem. The formula for a
2t+1,α
2i+1

follows from

a
2t+1,α
2i+1 = (2α + 2t + 2)

2t + 2k + M

2i + 2k + M
a

2t,α+1
2i . �

As we have that Cα
t,M(Pk)(x) = Cα

t,M,k(x)Pk with Cα
t,M,k(x) a polynomial in the vector

variable x, we can compare this polynomial with orthogonal polynomials on the real line. This
leads to the following theorem.
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Theorem 14. One has that

Cα
2t,M,k(x) = 22t t!(α + t + 1)tP

M
2 +k−1,α

t (1 + 2x2)

Cα
2t+1,M,k(x) = 22t+1t!(α + t + 1)t+1xP

M
2 +k,α

t (1 + 2x2),

where P
(α,β)
t are the Jacobi polynomials on the real line.

Proof. This follows immediately by comparing the coefficients given in theorem 13 with the
definition of the Jacobi polynomials:

P
(α,β)
t (x) = �(α + t + 1)

t!�(α + β + t + 1)

t∑
i=0

(
t

i

)
�(α + β + t + i + 1)

�(α + i + 1)

(
x − 1

2

)i

.

�

5. A physical application: interpretation of the super-dimension

In basic quantum mechanics, the harmonic oscillator is of the utmost importance. It satisfies
the following Schrödinger equation in R

m,

1
2

(
∂2
x − x2)φ = Eφ,

where we have used the language of Clifford analysis and units h̄ = m = ω = 1.
So a canonical extension of this model to superspace would be

1
2

(
∂2
x − x2

)
φ = Eφ,

where we have replaced the Dirac operator and the vector variable by their super analogues.
A direct calculation now shows that every function φ of the form φ = exp(x2/2)Ht,M(Pk) is
a solution of this equation with corresponding energy E = M/2 + (t + k). Furthermore, for a
given energy ET = M/2 + T , there are exactly

T∑
i=0

dimMi =
T∑

i=0

min(i,2n)∑
j=0

(
2n

j

)(
i − j + m − 2

m − 2

)

=
min(T ,2n)∑

i=0

(
2n

i

)(
T − i + m − 1

m − 1

)

eigenfunctions. The second equality follows from the Fischer decomposition or by a direct
calculation (see [6]).

Moreover, this is in correspondence with what would physically be expected. Indeed, the
number of eigenfunctions with energy ET is the total number of possibilities for selecting T
particles out of a set of m bosonic and 2n fermionic particles.

This can also be seen in the following way. If we put

a+
i =

√
2

2

(
xi − ∂xi

)
a−

i =
√

2
2

(
xi + ∂xi

)
b+

2i = 1
2

(
x̀2i + 2∂x̀2i−1

)
b−

2i = 1
2

(
x̀2i−1 + 2∂x̀2i

)
b+

2i−1 = 1
2

(
x̀2i−1 − 2∂x̀2i

)
b−

2i−1 = 1
2

( − x̀2i + 2∂x̀2i−1

)
we can rewrite the Hamiltonian as

H = 1

2

(
∂2
x − x2

) =
m∑

i=1

a+
i a−

i +
2n∑
i=1

b+
i b

−
i +

M

2
.
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As the operators a±
i , b±

i satisfy[
a±

i , a±
j

] = 0
{
b±

i , b±
j

} = 0[
a−

i , a+
j

] = δij

{
b+

i , b
−
j

} = δij[
a±

i , b±
j

] = 0
[
a∓

i , b±
j

] = 0,

this is the canonical realization of an oscillator with m bosonic and 2n fermionic degrees of
freedom. The ground level energy is given by M/2, which gives us a physical interpretation
of the super-dimension. The reader should compare this approach, e.g., with the one given in
[18] for the purely fermionic case.

Finally, the Hamiltonian can also be factorized in toto using Clifford numbers. Indeed,
putting

Q+ = 1
2 (∂x + x) Q− = 1

2 (∂x − x),

we have that

H = {Q+,Q−} .

6. Possible generalizations

It is also interesting to note that, although we have focused on the case of superspace, it is
possible to treat these special functions in a more general way. First of all, we need an abstract
definition of a type of algebras in which the construction can be done. This leads to the
following characterization.

Let P be a complex algebra satisfying

• P is graded

P =
∞⊕

k=0

Pk with PiPj ⊆ Pi+j .

• There is a linear operator ∂x on P with

∂x : Pk −→ Pk−1.

In particular, ∂x(P0) = 0. This operator is called the Dirac operator.
• There exists an element x ∈ P1 such that

{x, ∂x} = 2E + M, M ∈ C

where E is the Euler operator defined as EPk = kPk (extended by linearity to the whole
of P). Furthermore, we call M the formal dimension of the algebra P .

If P is an algebra satisfying the above axioms, one can proceed, as in this paper, to
construct Clifford–Hermite and Clifford–Gegenbauer polynomials in P . However, it remains
an open problem to construct examples of algebras P satisfying the previous axioms, and
having a formal dimension M �∈ Z.

7. Conclusions

In this paper we have generalized the Clifford–Hermite and the Clifford–Gegenbauer
polynomials to the framework of Clifford analysis in superspace. This has been done in
a purely symbolic way by exploiting the analogy with the classical case. This approach, where
one replaces the Euclidean dimension by the super-dimension, was used in previous work to
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construct an integral over the supersphere and on the whole superspace, leading in this way to
the Berezin integral.

We have proven the basic properties of these special functions, such as recursion relations,
orthogonality, differential equations and the like. We have also established a connection with
orthogonal polynomials on the real line. Finally, we have shown that the Clifford–Hermite
polynomials can be seen as solutions of a super harmonic oscillator, thus proving that our
framework of Clifford analysis in superspace is physically relevant and meanwhile giving an
interpretation to the super-dimension.

In further work we plan to use the Clifford–Hermite polynomials to study generalizations
of the Fourier and Radon transforms to superspace. In particular, we will use them to determine
a singular value decomposition of the super Radon transform.
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